A computational method for optimising fuel treatment locations

نویسنده

  • Mark A. Finney
چکیده

Modelling and experiments have suggested that spatial fuel treatment patterns can influence the movement of large fires. On simple theoretical landscapes consisting of two fuel types (treated and untreated), optimal patterns can be analytically derived that disrupt fire growth efficiently (i.e. with less area treated than random patterns). Although conceptually simple, the application of these theories to actual landscapes is made difficult by heterogeneity (fuels, weather, and topography). Here a computational method is described for heterogeneous landscapes that identifies efficient fuel treatment units and patterns for a selected fire weather scenario. The method requires input of two sets of spatial input data: (1) the current fuel conditions; and (2) the potential fuel conditions after a treatment is conducted (if treatment is permitted in a particular location). The contrast in fire spread rate between the two landscapes under the weather scenario conditions indicates where treatments are effective at delaying the growth of fires. Fire growth from the upwind edge of the landscape is then computed using a minimum travel time algorithm. This identifies major fire travel routes (areas needing treatment) and their intersections with the areas where treatments occurred and reduced the spread rate (opportunity for treatment). These zones of treatment ‘need and opportunity’ are iteratively delineated by contiguous patches of raster cells up to a user-supplied constraint on percentage of land area to be treated. This algorithm is demonstrated for simple and for complex landscapes. Additional keywords: fire modelling, prescribed burning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Numerical Study Method of Thermal Stress Distribution and Tortuosity Effectiveness in an Anode Porous Electrode for a Planar Solid Oxide Fuel Cell

A fuel cell is an electro-chemical tool capable of converting chemical energy into electricity. High operating temperature of solid oxide fuel cell, between 700oC to 1000oC, causes thermal stress. Thermal stress causes gas escape, structure variability and cease operation of the SOFC before its lifetime.The purpose of the current paper is to present a method that predicts ...

متن کامل

Numerical study of the effect of fuel injection timing on the ignition delay, performance parameters and exhaust emission of gas/dual fuel diesel engine using Computational Fluid Dynamics

Today, due to the various usage of compression ignition engines in urban transportation, as well as the need to reduce exhaust emissions and control fuel consumption, the use of alternative fuels has become common in diesel engines. Gaseous fuel is one of the most common alternative fuels that can be used in diesel engines. The utilization of alternative fuels in compression ignition engines re...

متن کامل

Three Dimensional Computational Fluid Dynamics Analysis of a Proton Exchange Membrane Fuel Cell

A full three-dimensional, single phase computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both the gas distribution flow channels and the Membrane Electrode Assembly (MEA) has been developed. A single set of conservation equations which are valid for the flow channels, gas-diffusion electrodes, catalyst layers, and the membrane region are developed and numer...

متن کامل

Refueling problem of alternative fuel vehicles under intuitionistic fuzzy refueling waiting times: a fuzzy approach

Using alternative fuel vehicles is one of the ways to reduce the consumption of fossil fuels which have many negative environmental effects. An alternative fuel vehicle needs special planning for its refueling operations because of some reasons, e.g. limited number of refueling stations, uncertain refueling queue times in the stations, variable alternative fuel prices among the stations, etc. I...

متن کامل

A crack localization method for beams via an efficient static data based indicator

In this paper, a crack localization method for Euler-Bernoulli beams via an efficient static data based indicator is proposed. The crack in beams is simulated here using a triangular variation in the stiffness. Static responses of a beam are obtained by the finite element modeling. In order to reduce the computational cost of damage detection method, the beam deflection is fitted through a poly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007